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The development of a small three-dimensional disturbance in plane Poiseuille flow is 
considered. Its kinetic energy is expressed in terms of the velocity and vorticity 
components normal to the wall. The normal vorticity develops according to the 
mechanism of vortex stretching and is described by an inhomogeneous equation, 
where the spanwise variation of the normal velocity acts as forcing. To study 
specifically the effect of the forcing, the initial normal vorticity is set to zero and the 
energy density in the wavenumber plane, induced by the normal velocity, is 
determined. I n  particular, the response from individual (and damped) Orr- 
Sommerfeld modes is calculated, on the basis of a formal solution to the initial-value 
problem. The relevant timescale for the development of the perturbation is identified 
as a viscous one. Even so, the induced energy density can greatly exceed that 
associated with the initial normal velocity, before decay sets in. Initial conditions 
corresponding to the least-damped Orr-Sommerfeld mode induce the largest energy 
density and a maximum is obtained for structures infinitely elongated in the 
streamwise direction. In  this limit, the asymptotic solution is derived and it shows 
that the spanwise wavenumbers a t  which the largest amplification occurs are 2.60 
and 1.98, for symmetric and antisymmetric normal vorticity, respectively. The 
asymptotic analysis also shows that the propagation speed for induced symmetric 
vorticity is confined to  a narrower range than that for antisymmetric vorticity. From 
a consideration of the neglected nonlinear terms it is found that the normal velocity 
component cannot be nonlinearly affected by the normal vorticity growth for 
structures with no streamwise dependence. 

1. Introduction 
In the traditional analysis of the laminar-to-turbulent transition for wall-bounded 

parallel shear flows, the primary instability is assumed to be a two-dimensional 
Tollmien-Schlichting wave, with three-dimensionality only entering a t  the second- 
ary-instability level. This model has been quite successful in explaining many 
features of vibrating-ribbon experiments (see Herbert 1983, 1988, for reviews) but 
other experiments have suggested the possibility of ' by-pass ' mechanisms to 
transition, not involving two-dimensional TollmienSchlichting waves (Morkovin 
1978). These would operate in, for example, pipe flow, in the spanwise spreading of 
turbulent regions in boundary layers, in transition due to distributed roughness and 
in high-noise environments. 

In  experiments where localized disturbances are introduced into the flow, 
turbulence first appears as turbulent spots without the appearance of two- 
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dimensional Tollmien-Schlichting waves. I n  fact, Chambers & Thomas ( 1983) found 
that a turbulent spot in a boundary layer does not seem to interact with a large- 
amplitude two-dimensional TollmienSchlichting wave. This indicates that the 
propagation and maintenance of turbulent spots may be associated directly with 
three-dimensional processes. However, oblique Tollmien-Schlichting waves have 
been observed at  the turbulent spots in wing-tip boundary layers (Wygnanski, 
Haritonidis & Kaplan 1979) and in plane Poiseuille flow (Carlson, Widnall & Peeters 
1982 and Alavyoon, Henningson & Alfredsson 1986), but they are not present in 
water table flow (Lindberg et al. 1984). Since these waves are not present in all flow 
situations, it is doubtful whether they are primarily associated with a generic 
mechanism for the maintenance of spots. It seems therefore worthwhile to consider 
other aspects of the three-dimensional problem. 

I n  linear theory, the development of two-dimensional disturbances is completely 
described by the modes of the Orr-Sommerfeld equation, but for three-dimensional 
disturbances a second equation is required for a full description of the flow field. Most 
conveniently, this equation is that for the vorticity perturbation normal to the wall. 
I ts  homogeneous part involves the Squire modes, which are damped (Davey & Reid 
1977), so it is tempting to neglect the importance of these modes in the development 
of three-dimensional disturbances. However, the normal vorticity is forced by the 
normal velocity and the possibility of algebraic growth has been recognized. 

I n  the inviscid case, Ellingsen & Palm (1975) showed that the streamwise velocity 
component of a small three-dimensional disturbance with no streamwise variation 
grows linearly with time. And in a related work, Landahl (1980) deduced that the 
streamwise integrated kinetic energy grows a t  least linearly in t ,  as t -j 03, provided 
that the net initial momentum normal to the wall is non-zero. 

For the viscous flow in a boundary layer, initial algebraic growth of infinitely 
elongated structures has been found to be associated with the continuous spectrum 
of the Orr-Sommerfeld equation (Hultgren & Gustavsson 1981). It is then a special 
case of a direct resonance between the normal vorticity and the normal velocity 
components. In bounded flows, this mechanism has also been found to be present for 
waves oblique to the mean flow (Gustavsson & Hultgren 1980 and Gustavsson 1981). 
But a study of plane Poiseuille flow (Gustavsson 1986) seems to reduce the role of the 
explicit algebraic time-dependence obtained at  a direct resonance. However, the 
work was not concerned with the complete solution of the initial-value problem and 
a reassessment of the results shows that algebraic growth may be possible if the full 
problem is considered. 

Therefore, a more detailed investigation is made in the present paper on the 
character of the forcing of normal vorticity by normal velocity. The study is based 
on the complete solution of the linear initial-value problem in plane Poiseuille flow. 
I n  52, the analytical foundation is given. Relevant equations for developing three- 
dimensional disturbances, and the boundary conditions, are reiterated in $2.1 and 
the formal solution for the normal vorticity is given in Appendix A. The kinetic 
energy density, in the wavenumber plane, of the induced vorticity is used to 
characterize the response to  the forcing and it is defined in 52.2. Since only the 
induced normal vorticity is of interest here, the initial vorticity is set to zero and in 
s2.3,  general expressions for flow fields satisfying this condition are presented. An 
arbitrary disturbance of the normal velocity can be expressed as a sum of 
Orr-Sommerfeld modes, but only the forcing by individual modes is studied. In 
Appendix B is shown how the formal solution of the initial-value problem for the 
normal velocity is reduced if the initial data correspond to an eigenfunction of the 
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Orr-Sommerfeld equation. The resulting solution for the induced normal vorticity is 
derived in 52.4. 

The results point to the importance of structures infinitely elongated in the 
streamwise direction, the analytical solutions for which are given in Appendix C, 
together with the asymptotic results for propagation speeds. As a substantial growth 
of the kinetic energy density is obtained, the consequences for developing 
disturbances in physical space are also considered. In  particular, the Reynolds- 
number effect is discussed as well as some experimental implications. Finally, the 
character of nonlinear effects is briefly discussed. 

2. Analysis 

2.1. Equations and boundary conditions 
Consider a plane Poiseuille flow for IyI < 1. The mean flow, U ( y )  = 1 -y2, is in the 2- 
direction and z is the spanwise coordinate. The development of a small three- 
dimensional disturbance (u ,v ,w)  to this flow is governed by an equation for the 
normal velocity, v, and one of the normal vorticity, w = (au/az) - (aw/az), which in 
non-dimensional form read 

and 

where prime denotes a y-derivative and V2 is the three-dimensional Laplacian. R( = 
U, h / v )  is the Reynolds number, where h is the channel half-width, U,, the centreline 
velocity and v the kinematic viscosity. The boundary conditions for v and w are 

av 

aY 
v = - =  w = O  a t  y = + l .  (3a+) 

Given the initial conditions for v (actually V2w) and w ,  formal solutions to (1) and (2) 
can be obtained using Fourier transformation in the homogeneous coordinates x and 
z and Laplace transformation in time. The solution for v has been given in plane 
Poiseuille flow by Shanthini (1989), and for w in plane Couette flow by Gustavsson 
& Hultgren (1980). The latter solution is readily adapted to  the case of plane 
Poiseuille flow and is given in Appendix A, for reference. 

2.2. The kinetic energy density 
The kinetic energy of the perturbation field is given by 

T = f Jz Jy (u2 + v2 + w2)  dz  dy dz, 

which in Fourier space may be rewritten as (cf. Gustavsson 1986) 

(4) 
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where the circumflex denotes Fourier transformation, with transform variables a and 
/I. Also, k2 = a2+P2 and D = d/dy. If the a and P integrations are omitted in (5), the 
energy density in the (a, /I)-plane is obtained, 

2.3. Flow jields with zero normal vorticity 

The main concern of this paper is to  investigate the forcing of w by v. Therefore, the 
initial vorticity, wo, is set to zero and the term $init in (A 1) in Appendix A thus 
vanishes. The remaining term, $,nd, corresponds to  a perturbation which is zero at  
t = 0, a fact which may be used as a check of numerical calculations. The character 
of flow fields with zero normal vorticity can be deduced by considering the horizontal 
velocity components. For such flows, continuity gives 

iu&, i/I a.Fo 
UO =gay k2 ay 

and c0=-- ,  

where subscript zero indicates values a t  t = 0. Application of the convolution 
theorem for Fourier transforms leads then to the following expressions for uo and wo : 

and 

where r12 = ( ~ - < ) ~ + ( z - [ y ) ~  and vo = v0(& y,[). In the special case when wo is 
axisymmetric in the (6 ,  [)-plane, i.e. depends only on y and p = (tz++);, the 
azimuthal velocity in this plane is zero and the radial velocity, u,, becomes 

u, = - - r p  1 ,avo -dp.  I 

r 0 a Y  
(9) 

This can be deduced from (S), or directly from continuity. Integration of (9) in the 
y-direction shows that the common experimental condition of a jet-like inflow 
normal to the wall is consistent with a flow field with zero normal vorticity. 

2.4. Solution for the normal vorticity excited by one Orr-Sommerfeld mode 

Since a general v-disturbance can be expressed as a sum of the modes of the 
Orr-Sommerfeld (0-S) equation, it is natural to study the induced vorticity from 
individual modes. It is then a simple matter of superposition to obtain the response 
from combinations of modes as would be required if the y-distribution of the initial 
v-disturbance is arbitrary. I n  Appendix B, it is shown how the general solution to  the 
initial-value problem for v reduces when the initial v is an eigenfunction of the 0-S 
equation. If 6 is the eigenfunction, and C the eigenvalue, the result for the 
Fourier-Laplace transform of v( = $) becomes 

A normal velocity perturbation generates normal vorticity of opposite symmetry, 
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and using (A 3) the following expression for the induced normal vorticity is obtained 
if 6 is antisymmetric : 

where the subscripts s and a indicate symmetric and antisymmetric, respectively. $l 

and $2 satisfy the equation 

@"-[k2+i&U-u]$ = 0, (12) 

and are normalized such that $l = $C.; = 1 and $; = $2 = 0 at  y = 0. (As the other 
symmetry case is analogous, only one case is considered in detail.) 

To obtain the explicit time-dependence for G,, the Laplace transform in (1 1)  must 
be inverted. The inverse is obtained by the appropriate choice of integration contour 
in the complex s-plane, but since s is related to the variable u through 

u = -Rs, (13) 

the inverse is, instead, evaluated in the complex u-plane. Then, 

where r, is the inversion contour. To obtain G, is thus only a matter of identifying 
the poles in the right-hand side of (1 1). The induced normal vorticity will consist of 
two parts, one associated with the pole at a = d (the forcing frequency) and the other 
due to the poles $11 = 0. The residue value for the first case is directly obtained as 
i/3Re-"tlR times the terms in curly brackets in (1  l),  evaluated for u = 8. For the other 
poles, the residue at a pole un involves the value of i3$ll/au at u = un, since 
kll = (a- un) a$ll/3u close to the pole. Differentiation of (12) with respect to u gives 
the following equation for a$-,/au : 

the homogeneous solutions of which are identical to those of (12). By using variation 
of the parameters, the solution to (15) thus becomes 

At  y = 1, where $11 = 0, (16) gives 

and the residue at  such a pole becomes 
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In the Fourier plane, the induced (symmetric) normal vorticity can thus be written 
as 

using obvious notation. A condensed and quite elegant form of (19), originally 
derived by Henningson (1990) through a direct approach to the expansion problem 
for the normal vorticity, can be obtained by noting that hs is zero a t  t/R = 0. Thus, 

which can be substituted into (19) to give the final expression 

e-"tlR - e - ~ n t / R  J: U' $a $In dy 
hs = - iPR C @-en i " ( Y ) F .  (21) 

(The other symmetry case is obtained by changing $a to & and @ln to $zn.)  

The solution (21) shows that the relevant time parameter for the development of 
a disturbance is t/R and the proper timescale is thus the viscous scale h2/v.  From (21) 
the algebraic t/R-dependence for small times follows immediately, if the exponential 
terms are Taylor-expanded. Also, the algebraic t/R-dependence which appears a t  a 
direct resonance (@ = gn, some n) is readily obtained. 

Aside from the explicit t/R-dependence, the sum in (21) is characterized by the two 
parameters k and aR so, because of the PR-factor, three parameters need to be 
specified for 4 to be calculated. Most conveniently, these are k, uR and R. Then, /3R 
may be written as 

With this choice of parameters, it is straightforward to apply the results obtained a t  
one Reynolds number to other H-values. Since R appears only in the PR-factor in (21) 
the amplitude effect on 4 of changes in R and with k and aR fixed is easily 
determined. However, with cy,R fixed, an increase in R will decrease 01, and vice versa. 
Also, /3 will vary according to ( 2 2 )  so new (a,P)-values will be associated with the 
resealed amplitude of 4. From these considerations some general conclusions can be 
drawn about the behaviour of h as R is changed. For increasing H, /3R tends to kR 
so 4 becomes proportional to R. (When uR = 0, strict proportionality in R applies 
at all Reynolds numbers.) Similarly, the energy density associated with the normal 
vorticity, as given in (6), will in view of ( 2 2 )  be weighted by a factor R2- ( a R / k ) 2 ,  and 
thus scales with R2 as R +  00. Also, a + O ,  which corresponds to structures 
increasingly elongated in the streamwise direction. 

As R decreases, /3 becomes zero when R = uR/le. This corresponds to a two- 
dimensional disturbance, for which the normal vorticity is zero. 

It should be remarked that the R-dependence is a unique property of the induced 
normal vorticity and has no counterpart in the normal velocity ; the R-factor in (10) 
will not show up explicitly when inverting the Laplace transform, according to (14). 

/3R = k(R2 - (uR/k)*);. ( 2 2 )  
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Finally, it must be remembered that the R-dependence discussed applies only in 
wavenumber space; the consequences in physical space are considered in the 
discussion. 

3. Numerical results 
3.1. Normalization of the forcing 0-S mode 

For each combination of (k,uR) the 0-S equation produces an infinite number of 
eigenmodes and in the parameter range studied all modes are damped. The - - - 
amplitude of a single forcing 0-S mode was chosen 
density is unity, i.e. 

such that its initial energy 

Owing to the damping, the corresponding integral with 
for t > 0. 

3.2. Numerical techniques 

(23) 

4 will thus be less than unity 

The numerical study started with the determination, at a given (k,aR),  of the 
eigenmodes of the 0-S equation. The eigenvalues were determined by a shooting 
method, and a fourth-order Adams implicit method was used to integrate the 0s 
equation. The eigenfunction was then normalized according to (23), where the 
numerical quadrature was done with the Simpson rule, extended with three steps of 
Richardson extrapolation, thus producing an error of O(Ay'O), where Ay is the step 
size. This method requires the number of steps to be a factor of 12, and typically 432 
steps were used. Then, a number of vorticity modes were determined, and the normal 
vorticity resulting from the forcing frequency, and a sum of terms like (18), was 
calculated a t  36 ( = 432112) steps. Strictly, an infinite number of residues of the form 
(18) should be added to the residue a t  CJ = d in order to represent the vorticity. 
However, it was found that, as the damping of the individual vorticity modes 
became larger than that of the forcing 0-S mode, addition of further modes only 
acted to improve the accuracy at t / R  = 0 and typically only six vorticity modes were 
required to  resolve the essential features of the time development. The simpler 
expression (21) was also used to  give an independent verification of the calculations. 
Finally, the energy density of the normal vorticity, 

was determined for various values of t lR. 

3.3. General behuviour of the induced energy density 
For k = 1 and uR = 100, the time dependence of (24) was determined for the two 
least-damped 0-S modes, normalized according to (23), and the results are shown in 
figure 1. The Reynolds number chosen was 1O00, but the amplitude can easily be 
rescaled to  other Reynolds numbers using (22). 

Figure 1 exhibits the general time behaviour of the induced energy density: i t  
starts a t  zero for t lR = 0, increases to a maximum and then decays to zero. In  the 
decaying part the major contribution comes from the least-damped mode, but in the 
growth phase more modes are important. For small times, the energy density is 
proportional to ( t /R)2  since the normal vorticity grows like t lR.  Figure 1 also shows 
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FIQURE 2. ( a )  Maximum energy density in figure 1 (a)  symmetric vorticity) for various k ;  (b )  
t/R-values for the points in (a) .  (R = 1000, aR = 100). 

k k 

that the least-damped 0-S mode induces the largest energy density a t  any given 
time. This was found to be a general property so further investigation was 
concentrated on the least-damped 0-S mode for each symmetry case. For the least- 
damped antisymmetric 0 4  mode, keeping aR fixed (=  100) and varying k, the 
maximum amplitude of figure 1 and the time to  reach the maximum were determined 
and are shown in figure 2. Since the maximum occurs a t  different t / R ,  for various k, 
a more detailed diagram would show contours of the energy density as a function of 
k and t lR .  However, each aR produces one such diagram so the effect of changing aR 
was considered next. This showed that a larger aR produces a smaller value at the 
peak compared to that in figure 2 ( a ) ,  with k slightly varying from the value in that 
figure. But for smaller aB, larger maxima were obtained. For this case the analytical 
solutions were therefore derived and are given in Appendix C. 

3.4. Results for aR = 0 
3.4.1. Energy density of induced normal vorticity 

The energy density of the normal vorticity, represented by (C 9) and (C 17)  in 
Appendix C, was calculated for various k-values with the least-damped 0 4  mode as 
the forcing. The results are summarized in figure 3 where the contours of the energy 
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FIGURE 3. Contour curves in the (k, t/R)-plane for the energy density, in units of x R2, of the 
normal vorticity induced by the least-damped 0-S mode. (a) Symmetric vorticity ; ( b )  
antisymmetric vorticity. (aR = 0). 

Case Forcing mode k(peak) t/R(peak) (peak value)/R2 

Symmetric os1 2.60 0.057 2 1.083 x 10-4 
vorticity 052 4.11 0.0182 1.441 x 

Antisymmetric 0s 1 1.98 0.0840 1.779 x 

053  4.95 0.012 1 6.523 x 

OS3 5.88 0.00853 3.314 x lo-' 

vorticity 052  3.18 0.0309 3.748 x 10-6 

TABLE 1 .  Characteristics of the peak values of induced energy density from forcing by different 
0-S modes. The forcing 0-S modes have opposite symmetry to the vorticity modes. ccR = 0 

density, in units of x R2, are plotted as a function of k and t/R. The contours 
show some noteworthy features. First, there is a maximum value at a certain 
combination of k and t/R. These values are 1.083 for symmetric vorticity and 1.779 
for antisymmetric, and are located a t  k = 2.60, t /R = 0.0572 and k = 1.98, t/R = 
0.0840, respectively. For a k-value to the right of the peak, the t/R-dependence is 
more compressed than to the left, indicating that shorter spanwise scales are most 
quickly damped. Conversely, for a given t/R, the k-dependence is seen to be more 
compressed above the peak. The extension of the contours below the peak indicates 
that initially a wide spectrum of spanwise scales is subject to growth. As the peak is 
passed, a narrower k-range is amplified, with a slight shift of the k with maximum 
growth towards smaller values. This shift is largest for symmetric vorticity. 
Differences in the particular shape of the contours are also evident from the figures. 

For initial conditions corresponding to higher 0 4  modes, the character of the 
contours is similar to those of figure 3, but the peak amplitude and its position in the 
(k, t/R)-plane is changed. The essential data are summarized in table 1 from which 
it can be seen that even the third 0 4  mode is capable of producing growth a t  
R = 1000. 

3.4.2. Phase speeds 

The phase speed, co, of the least-damped 0-S mode, as given by (C 6) and (C 16), 
was calculated for 0.2 < k < 10 and the results are shown in figure 4. For the 
antisymmetric mode, co is seen to vary only slightly with k and is in the interval 
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FIGURE 4. Phase speed of least-damped 0-S mode at various k and at aR = 0: 0, symmetric 
mode; a, antisymmetric mode. 

0.714.75. In  contrast, c,, for the symmetric mode varies considerably and is in the 
interval 0.424.87. 

The phase speeds, c,, of the vorticity modes are given by (C 12), where y,  is given 
by (C 8) for symmetric modes, and by (C 18) for antisymmetric modcs. In  the former 
case, c ,  = 0.87, 0.69, 0.67 for the first three modes and for the latter case, c, = 0.72, 
0.68, 0.67. In  both cases, c ,  approaches 

Since both the forcing 0-S mode and the vorticity modes determine the speed of 
the induced normal vorticity, it can be concluded that the propagation speed for 
symmetric vorticity is confined to a narrower range than for antisymmetric 
vorticity . 

3.4.3. y-Distribution of induced normal vorticity 

The development of the induced kinetic energy density was obtained by integrating 
the vorticity distribution in the y-dircction so it was considered of some interest to 
study also the temporal development of the y-distribution of the vorticity. This was 
done for k-values a t  the peaks in figure 3 and the results are presented in figure 5 .  It 
is seen that, for antisymmetric vorticity (figure 5 b ) ,  the amplitude a t  maximum 
energy density ( t /R  = 0.084) is largest for all y-values. For symmetric vorticity, 
however, the temporal evolution of the y-distribution, and its relation to maximum 
energy density, is more complicated. The vorticity distribution is seen to develop a 
maximum which eventually moves towards the centreline as its magnitude decreases. 
Consequently, the amplitude can locally be larger than a t  maximum energy density 
(t/R = 0.0572), but the maximum amplitude of the vorticity ( w 0.037), obtained at  
the time of maximum energy density, is never exceeded anywhere a t  any other time. 
The results show that the temporal development of the local vorticity close to the 
centreline may not be directly related to the development of the energy density in 
this case. 

3.5, Results for aR =l= 0 

3.5.1. Growth region in the (a,P)-pZane 

Even if the largest amplitude is obtained a t  aR = 0, growth is also present for 
other &-values (figure 2a shows the results a t  aR = 100 and k = 1).  Although a 
thorough investigation of the extent of the growth region is the subject for a separate 
study, an example is presented in figure 6. The figure shows contours in the (a,B)- 

for the higher modes. 
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FIGURE 5.  y-Distribution of absolute value of normal vorticity, in units of R, at various t/R-values. 
(aR = 0). (a) Symmetric vorticity (k = 2.60), ( b )  antisymmetric vorticity (k = 1.98). 
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FIGURE 6. Contour curves in the (a,/?)-plane for energy density of induced normal (antisymmetric) 
vorticity. The labels are values of the energy density (distance between contours is 20, t/R = 0.08, 
R = 1000). 
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plane of the induced energy density of antisymmetric normal vorticity at R = 1000 
and t / R  = 0.08, which is close to the time when the peak value for aR = 0 is reached. 
A phenomenon of special interest is exhibited in this figure by the contour with the 
value 20. At the largest U-values, this curve has a slight indentation which is due to 
the two least-damped 0-S modes coinciding at k = 2.539 and aR = 216.6 (cf. 
Shanthini 1989), which is just outside the distorted contour. As the extension of the 
growth region is larger for smaller times, but with a lower peak value, the degeneracy 
will influence the shape of the contours primarily in the initial phase. A proper 
assessment of the induced energy density for small times will therefore have to  
incorporate the two least-damped 0-S modes. In  particular, the generalized 
eigenfunction (Shanthini 1989) need to be considered at  the degeneracy point. 

Figure 6 is obtained for R = 1000 but, using the arguments of $2.4, the relationship 
to contours a t  other R-values can be deduced quitc easily. Thc argument rests upon 
the observation that R % a R / k  in the region with substantial growth. Then, the 
induced energy density is approximately proportional to RZ and a doubling ofR, say, 
will quadruple the value on the contours. However, the rcscalcd values are associated 
with halved a-values, whereas /3 is marginally changed. Thus, figure 6 can be used a t  
R = 2000 by simply multiplying the values on the contours by a factor 4 and 
rescaling the a-axis to the range 0 . 1 5 .  

3.5.2. Direct resonance 
Since the direct resonance between the normal vorticity and velocity components 

originally motivated the present study, the growth properties of this mechanism 
were also investigated. It was observed that the energy density of the induced 
normal vorticity varied smoothly as the parameters k and UR varied across a 
resonance point and thus the temporal development follows the general behaviour of 
figure 3. Also, the direct resonances involve higher 0-S modes, suggesting that only 
a small growth is possible. However, some of the direct resonances in Gustavsson 
(1986) do exhibit amplification. At R = 1000, resonance 2s (k = 5.794, aR = 145.1) 
gave 16.5 times the initial energy density, 6s (k = 1.015, aR = 345.8) 1.8 times and 
l a  (k = 1.478, cd2 = 116.1) 2.8 times. 

4. Discussion 
The results presented show that amplification of the kinetic energy density of a 

small velocity perturbation can be obtained a t  sub-transitional Reynolds numbers 
by the mechanism of vortex stretching, operating on the normal vorticity component. 
It is an intriguing result that, although both the normal vorticity and the normal 
velocity components are expressed in terms of damped modes, considerable 
amplitudes can be reached before the decay sets in. 

The growth pertains to wavenumber space, so it is important to assess its 
consequences in real space also. The kinetic energy, the normal vorticity and the 
associated velocity amplitudes are then quantities of primary concern, and of 
particular interest is their Reynolds-number dependence. In order to study this, the 
initial conditions need to be specified. Generally, these are given as distributions in 
the (a ,  P)-plane and it seems natural to base the argument on the growth properties 
in this plane. However, for a point disturbance in the (x, z)-plane the distribution in 
the (a,  /3)-plane is a constant and, since a distributed disturbance in the (z, 2)-plane 
may be considered as a superposition of point disturbances, such a distribution may 
be assumed without loss of generality. With this choice, the fact that i t  is the 
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parameters k, CLR and R (with variables t/R and y) that  describe the induced normal 
vorticity can be fully exploited. Specifically, 4 can be written as 

where fi is related to the sum in (21). The induced kinetic energy can be determined 
from ( 5 )  via integration in the (a, /3)-plane of the energy density. But, because of the 
specific parameter combination and the choice of initial distribution, the integration 
may equally be performed in the (k,  &)-plane. The connection between integrations 
in the two planes is given by 

4 = -i@Rh(k, &; tlR, y), (25) 

... dad@ = IkIaR.. .Jdkd(aR).  (26) 

where J ( = - k//3R) is the Jacobian of the coordinate transformation. Here, 
integration covers the whole (a,P)-plane but, because 1011 < k, it is restricted to 
laRl < kR, 0 < k < co, in the (k,&)-plane. 

The kinetic energy for the induced normal vorticity becomes 

and since the largest amplitudes are obtained when R $ &/k, T is seen to  be 
approximately proportional to R. However, when R increases, the integration region 
in the (k,&)-plane becomes larger and there is an additional contribution to  _the 
integral. To estimate this, more detailed information about the behaviour of 52 is 
required. 

The magnitude in real space of the normal vorticity is obtained by inverting the 
Fourier transform, and the following expression is obtained : 

where 

In (28), R appears only in /3 and since, again, R 9 &/k in the region with largest 
growth, the R-dependence ofw seems to be weak. But, as for T, the integration region 
in the (k, aR)-plane increases with R, which leads to an additional contribution to  w .  
In contrast to T, this contribution is non-zero at the boundary of the integration 
region (& = kR, or /3 = 0) so i t  is expected that the extra part could be relatively 
larger for o than for T. Related to this is the observation that the region in the (k, 
&)-plane where growth occurs is more extensive a t  small t/R-values (cf. figure 3 
where & = 0). This indicates that the Reynolds-number effect on w is more 
pronounced a t  earlier times than a t  later. Finally, it is observed from (28) that x/R 
appears as a natural lengthscale for the development of w .  

The results obtained can also be given an interpretation in terms of what can be 
expected in an experimental situation. The proper time parameter for the 
development of the normal vorticity is t/R, where t is the non-dimensional time based 
on U, and h. The dimensional time, t * ,  thus becomes 

which shows that the time to reach the maximum in the vorticity is independent of 
9-2 
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Reynolds number in an experiment where the fluid and the plate distance are kept 
constant. It may also be of interest to know the distance travelled when the largest 
amplitude occurs. The dimensional travel distance, L*, for a disturbance is given by 

where cR is the (non-dimensional) propagation speed. This shows that the travel 
distance to reach the maximum in vorticity is proportional to R in a given 
experimental set-up and thus confirms the importance of the scaling educed from 
(28 ) .  

Of the particular quantitative results obtained, the spanwise scales, the 
propagation speeds and the time to  reach maximum amplitude would be suitable for 
comparison with experiments. Also, the results that  small streamwise wavenumbers 
are preferentially amplified should have experimental consequences. It suggests that 
streamwise streaky structures should develop from an initial disturbance. In  
discussions about streaky structures, the streamwise vorticity is often considered as 
an important quantity. However, the results obtained here do not support this 
conjecture. The streamwise vorticity of a perturbation is given by (awldy) - (av/az) 
and, for streaky structures, continuity shows that (avlay) + (aw/az) x 0. Thus, if v 
corresponds to a decaying disturbance, w will also decay and so does the streamwise 
vorticity. It seems therefore that only in a secondary, nonlinear phase can this 
vorticity component be dynamically significant. At the linear level considered here, 
the normal and the spanwise vorticity, (awlax)- (au lay) ,  components grow, and i t  
may be an interesting object for further studies to determine the change of the 
vorticity vector due to this growth. 

Experiments strictly pertaining to the assumptions of the theory presented here, 
i.e. small initial disturbances, are presently not available. However, the recent results 
by Klingmann & Alfredsson (1990) show that a disturbance generated by the 
injection of fluid through a hole in the wall, and which does not lead to a turbulent 
spot, develops in a manner which is consistent with the results obtained here. 

In this context, it should be mentioned that the numerical simulations by 
Henningson, Johansson & Lundbladh (1989) showed that a streaky pattern develops 
from a localized initial disturbance consisting of two pairs of counter-rotating 
vortices. Also, the kinetic energy associated with the normal vorticity was found to 
have a considerable growth. Other numerical simulations (Kim &, Moser 1989) have 
also established the growth of infinitely elongated structures. 

Because of the growth, i t  is of considerable interest to know whether the 
mechanism studied can evoke nonlinear phenomena. As more work is needed to 
answer this, only a couple of aspects of the nonlinear problem will be discussed here. 
First, the results show that the growth of the normal vorticity is confined to a certain 
time interval. Therefore, it is likely that nonlinearities must come into play before 
the peak amplitudes have been passed. This gives t / R  = 0.084 (cf. figure 3 b )  as the 
upper time limit before which nonlinear mechanisms must start to operate. This time 
applies to 01 = 0, at which wavenumber the role of nonlinearity can be assessed in 
more detail. This is done by considering the nonlinear terms omitted in the 
derivation of (1) and (2). Following the notation in e.g. Benney & Gustavsson (1981), 
the nonlinear term in the v-equation is 
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where 
aui s, = u.-, 

3 ax, 
using tensor notation. With a/ax = 0, (31) reduces to  

where 

and 

Continuity then also gives 

a2s2 azs, 
a Z 2  ay aZ 

av av s, = v-+w--, ay aZ 
aw aw 

s,=v-+w--.  ay aZ 
av aw 
ay a2 
-+- = 0. 

(33) 

(34) 

(35) 

As previously discussed, (36) shows that if v corresponds to  a decaying mode, w will 
also decay. Thus, both S ,  and S,  will decay and so does the nonlinear term (33). In 
linear theory, this term is neglected at t = 0, so it will always be small and nonlinear 
effects will not appear in v. This indicates that infinitely long structures may be 
dynamically passive in a nonlinear development, unless they form the basis for 
secondary instabilities. Thus, studies of nonlinear effects on the evolution of v 
through self-modulation by the present mechanism should therefore be directed to 
structures with a/ax =k 0. However, for this case other approaches to the nonlinear 
problem are possible. One is to use the fact that the Fourier transform of a product 
is the convolution of the Fourier transforms for the individual factors. Applying this 
to  (31), and eliminating u and w,  produces among other terms the following 
vorticity-vorticity term : 

k’ sin2 (8 - y ) 
d(ct’,p’)d(ct-ct’,P-p’)dk’dV, (37) 

a Y  Jam 1 + (k’/k)’ - 2(k’/k) cos (8 - y) 

where ct‘ = k‘siny, p’ = k‘siny, ct = kcos8 and p = ksin8. Since d is roughly 
proportional to R, i t  seems likely that this nonlinear term in real space is also 
proportional to R. Another large-Reynolds-number effect would therefore be to 
activate nonlinearity in the v-equation. 

There are some obvious extensions of the present work such as a more detailed 
investigation of the energy growth in the (a,P)-plane and the y-dependence of the 
growth. Also, the properties of the nonlinear term (37) is an interesting topic for 
further studies. Finally, since the forcing mechanism studied is quite general, its 
capacity to  amplify three-dimensional disturbances in other flows should be worth 
investigating. This particularly applies to flows which are predicted to be stable by 
traditional stability theory. 

This work has in part been supported by the National Swedish Board for Technical 
Development (STU) through its program for basic research (STUF). The author has 
also benefited from discussions with Dr R. Shanthini and Professor D. Henningson. 

Appendix A. Solution for the normal vorticity 
Changing the limits of integration in the solution given in Gustavsson & Hultgren 

(1980), the solution for the Fourier-Laplace transform of the normal vorticity, $, is 

@ = @/init + @in*, (A 1) 
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(A 3) 

Here, Ojo is the Fourier transform of the initial normal vorticity, $ the 
Fourier-Laplace transform of v, 

Xl(Y) = kl(Y) k2,-1-kz(Y) kL-1, (A 4) 

X Z ( Y )  = kl(Y) $2,1-$2(Y)$1,17 (A 5 )  

and E = kl*-lkZ,l-kl,lk2,-1~ (A 6) 

where k1 and $ z  are solutions to equation (12). The second subscript indicates the y- 
value where the function is evaluated. 

Appendix B. Solution of the initial-value problem for the normal velocity; 
eigenfunction excitation 

Starting with the general solution for the normal velocity, as presented in 
Shanthini (1989), the initial value [A = (D2-k2) .Go] is split into antisymmetric and 
symmetric parts, but only the first case is studied in detail. The result for the 
symmetric case is then easily inferred. Thus, 

where 

s l , = o = s n u  ( n =  1. . .4 ) .  

{Ku}:=l are the cofactors of {$y}:=l in the Wronskian for {$,,} and can be shown to 
satisfy the adjoint to the 0-S equation. They also satisfy the following relationships 

C $ , K ,  = Z$vKL = x $ , K :  = 0 and C $ , K r  = - 1  (B 5 a 4 )  
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Finally, E m n = $ r n $ i - $ k $ n  a t  Y = I .  (B 6) 

Assuming Go to be an (antisymmetric) eigenfunction, 6, of the 0 s  equation with 
eigenvalue a, the initial condition becomes 

Aa = p-k2$ .  (B 7)  

The following relationship can then be used to simplify (B 2) and (B 3 ) :  

(a- c) [:K(fl- k2$) dy = [ K p  -KT + K $  -K'''$ 

+(2k2+iaRU-u) (K'$-K$)+iaRU'K$]jg, (B 8) 

which holds if K satisfies the adjoint of the 0-S equation, with parameter v. (u is 
related to the more commonly used phase speed, c, through u = iaRc). Applying 
(B 8) to (€3 2), using (B 5 )  and the fact that  $ = $ = 0 a t  y = 1,  leads to the following 
expression : 

(u-@)Fr&) = ~~Y)-C3[~21$2(Y)+~4,$4(Y)l+C2[~;1$2(~)+~;1$4(~)1 (B 9) 

where c2 = P ( y  = l),  c3 = p ( y  = 1)  (B l O a ,  b )  

and K2, = K2(y = 1) etc. 

Similarly, for (B 3) is obtained 

(a- a)F24(y) = - $ Z ( Y )  {(E14K11 +E34K31) '3- +E34Ki1) '2) 

-$4(~){(E21K11+E23K31)C3-(E21K;1+E23K~1)C2}' (B ''1 
From the definition of {K,} in terms of {$"}, it is straightforward to  show that the 
following relationships hold : 

E I ~ K I I + E ~ , K ~ I + E ~ ~ K ~ ~  = 0, E14K;1+E34Ki1+E24K;1 = 0, (B 12a, b)  

E21K11+E23K3,+E24K41 = 0, = 0. (B 12c, d )  

Using (B 12) in (B 11) then gives 

F24(Y) 

E24 
('-')- = '3LK2l #2(Y)  +K41 $4(y)l-C2[K;1 $ 2 ( y ) + K k  $4(!4)1 (B 13) 

and the combination of (B i), (B 9) and (B 13) finally produces 

where the proper u-dependences are shown explicitly. 

Appendix C. Asymptotic results as aB + 0 
The technique to obtain the asymptotic forms as CGR --z 0 is described in for example 

Drazin & Reid (1981, p. 159) and amounts to the following expansions for the 
eigenfunction to  the 0-S equation and the eigenvalue : 

$= qTo+aR$l+..., (C 1) 

c = -  k 2 + ~ 2 + C o + a R c l + . . .  . 
iaR 
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To order (aR)O, $o and 7' are determined, and to order (aR)' the solvability condition 
gives c,,. The antisymmetric eigenfunction becomes 

K, = A[sinh ksin(yy)-sinysinh(ky)], (C 3) 

where 
2 k2 

(7' + k2) (1 -sin 27/27) 
A2 = 

is obtained from normalization of the energy and 7 is determined from the dispersion 
relationship 

from which 7 can be calculated with iterative techniques. 

k t a n y = y t a n h k ,  (C 5 )  

The phase speed (co)  becomes 

sin2 7 sin ( 2 7 )  --+-+- 
4 47' Y2+k2 co = [( 

k2 

+-- y2+k2 3 (5 -+- 2 272 k') sin27 . ] / r ; k 2 (  - 1 -~ si;?)] ' ( C 6 )  

A similar analysis for equation (12) gives 

where yn = (n+$,n (n  = 0,1 ,2 ,  ...). (C 8) 

For the Fourier transform of the induced (symmetric) normal vorticity the two parts 
become 

sin (7y) 4ysiny sinh (ky) 8kysin 7 cosh (ky) 
7 Y2+k2 sinhk (7'+k2)' sinhk 

+y--- + 
and 

Since hlS + djZs = 0 at  t/R = 0, the term in curly brackets in d,, can be eliminated and 
the following expression for hS is finally obtained : 

ds =-ikR(72++k2)AC(e-"t /R-e-  n t 'R)  ~ 0 s  ( Y n  Y) 
n 

where 

and 
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The phase speed for the free vorticity modes becomes 

2 1  
c, =-+-. 

3 2Y2, 

The corresponding result for a symmetric 0-S eigenfunction is 

wherc 

and 

The phase speed becomes 

2k2 
(y2 + k2) (I  + sin 27/27) ' 

$2 = 

y t a n y = - k t a n h k .  

co = [(--+-+,)(l+yJ)(k+-)cos27 3 k2 47' sin(27) tanhk 1 
4 4r2 y + k  cash' k 

+-- y2+k2 ( -+- 5 k2 ) cos2y ]/rlk2(l+y)] - (C16) 3 2 272 

and the induced normal vorticity is 

cos (yy) 47 cos 7 cosh (ky) Sky cos 7 sinh (ky) +y--- + 
y Y2+k2 coshk (72+k2)2  coshk 

hZa = -ikR(Y2 + k2) 

which, as in the previous case, can be reduced to 

ha = ikR(y2+ k2) 

(C 17c) 

where now yn = 1zn (n = 1,2,  ...). (C 18) 

Also, the expression (C 10)-(C 12) apply. 
The algebra was checked with a commercially available program for symbolic 

manipulation, MAPLE, developed by Symbolic Computation Group, University of 
Waterloo, Canada. Also, the results for the energy density were compared to 
numerically obtained results a t  aR = 1. Even a t  this value, the asymptotic results for 
aR = 0 differed only marginally from the full numerical solution. 
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